The theory complex orientations connects two objects: the infinite complex projective space and the complex cobordism spectrum .

It’s a sort of algebraic number theory over . Examples are

  • ”Balmer’s interpretation of thick subcategory theorem”: the construction of the Balmer spectrum (and generalization like the constructible Balmer spectrum, as in chromatic nullstellensatz). How does this use complex orientation?
  • Quillen orientations on formal and -divisible groups.
  • ”Topological langlands”

Complex Orientations

Definition A complex orientation on an ring spectrum is data:

  • A map of spectra .
  • The composite
\Sigma^2 \mathbb S \simeq\Sigma_+^\infty\mathbb CP^1 \xrightarrow{\Sigma^\infty_+ \iota} \Sigma^\infty_+\mathbb CP^\infty \xrightarrow{\theta} \Sigma^2 \underline A $$ as an element of the anima $$Map_{Sp}(\Sigma^2 \mathbb S, \Sigma^2 A) \simeq Map_{Sp}(\mathbb S, A) \simeq \Omega^\infty A$$ is isomorphic to the multiplicative unit $$1: \mathbb S \to A \in \Omega^\infty A$$ **Remark** Here we're asking for the *condition* "there exists an isomorphism". Hence, this definition only depends on the underlying "homotopy ring spectrum" of $A$: $$h(A) \in Alg_{E_1^\heartsuit}(h(Sp))$$ This also suggests a new notion **Definition** A *complex framing* on $A$ is data - $\theta \in \Sigma^2 \underline A^{\mathbb CP^\infty}$ (as before) - DATA of an isomorphism: $1 \to \iota^*\theta$ **Proposition** A complex orientation on $R$ is a ring map $MU \to R$. This provides a natural notion of morphisms and higher morphisms between complex orientations. We define **Definition** $$\mathbb Cor(R) := Map_{CAlg(Sp)}(MU, R)$$ That is, $Spec(MU)$ is the moduli of complex orientations. Lurie calls these Quillen-orientations. It's the spectral version of a formal group law over $Spec(R)$. ### Strict Elements **Definition** The anima of $n$-(strict-)elements of a spectrum $X$ is given by $$nElem(X):= Map_{Alg^{(n)}(S)}(\mathbb Z, \Omega^\infty X)$$ **Remark: Koszul-dual description** The right hand side can be rewritten using toposic Koszul duality, namely that $$Map_{Alg^{n}(S)}(\mathbb Z, \Omega^n \Omega^\infty\Sigma^n(X)) \simeq Map_{S}(B^n \mathbb Z, \Omega^{\infty} \Sigma^nX)$$ **Example: 1 and 2 elements** There are two instances of this calculation that will be important - $1Elem(X) \simeq Map_S(B\mathbb Z, \Omega^\infty \Sigma X) \simeq Map_{Sp}(\Sigma \mathbb S, \Sigma X) \simeq \Omega^\infty X$ - $2Elem(X) \simeq Map_S(B^2\mathbb Z, \Omega^\infty \Sigma^2 X) \simeq Map_{Sp}(\Sigma^\infty_+ \mathbb CP^\infty, \Sigma^2 X)$ That is, they're the spectra respectively encoding $X$-cohomology at $*$ and at $\mathbb CP^\infty$. **Remark: forgetful maps** We have functors $$U_n:nElem(X) \to {(n-1)}Elem(X)$$ giving by forgetting $E_n$ maps to $E_{n-1}$. **Definition** A $E_2$ strictification of $x \in 1Elem(X)$ is a lift along $U_2$ to $\tilde x \in 2Elem(X)$. **Remark: where this is going** Combing with the example calculation, the main result of the paper of Grossman-Naples is that the map $$U_1: X^{\Omega^2 \mathbb CP^\infty} \to X$$ is the one induced by restriction along $\mathbb CP^1 \to \mathbb CP^\infty$. **Remark** Doing this in families, we can get $E_n$-stacks that are moduli of $n$-elements. The local geometry on these stacks is "strict deformation theory". ## Moduli **Proposition** The functor $$CAlg(Sp) \xrightarrow{U} Sp \xrightarrow{\Omega^n}Sp\xrightarrow{nElem}S$$ is corepresented by the spherical group ring $\mathbb S[B^n\mathbb Z] \in CAlg(Sp)$. That is $$Spec(\mathbb S[B^n\mathbb Z]) \simeq nElem(\Omega^n\underline{(-)})$$ **Proof**: by unpacking the adjunctions. It turns out these are loop stacks of the flat affine line **Proposition** $$Spec(\mathbb S[B^n \mathbb Z]) \simeq \Omega^n_0Spec(\mathbb S[\mathbb N]):= \Omega^n\mathbb A$$ **Example** Let $V^\otimes$ be a symmetric monoidal stable $\infty$-category $$Elem(Pic(V)) \simeq Elem(\Omega Br(V)) \simeq \Omega^n\mathbb A(Br(V))$$ That is, the strict picard group is the anima of points $\{x: Spec(Br(V)) \to \Omega^n\mathbb A \}$. **Example** the element $1 \in \Omega^\infty MU$ (this discussion could explain the appearance of Wilson spaces)